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ABSTRACT

In this paper a semilinear heat equation with a convex nonlinearity is

considered. The asymptotic behavior of the solutions is completely determined
ané this gives, in particular, a very precise description of the global stability

of stationary solutions.
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SIGNIFICANCE AND EXPLANATION

i Semilinear heat equations (that is heat equations perturbed by a non~-

linearity just acting on the solution but not on its derivatives) occur in

many applications: for example in combustion theory, or in population

-

genetics ... One of the main problems concerning this type of problem is to

determine the asymptotic behavior of solutions (when the time t + ®), 1In

this paper, assuming that the nonlinearity is convex, a complete description
i of the asymptotic behavior of solutions is given including in particular a

precise determination of the global stability of steady state solutions.
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equation:

where f

Introduction:
The goal of this paper is to give a complete description of the asymptotic

behavior of the solution

To illustrate our result let us consider the

ASYMPTOTIC BEHAVIOR OF SOME NONLINEAR HEAT EQUATIONS

(*)

P. L. Lions

u(t,x) as t + » of the following nonlinear heat
8Y _ pu= f(u) in (0,®) x &
ot .
u{t,x) =0 on 30 , u(0,x) = uo(x) ;

is some convex nonlinearity, and ¢ is a bounded, regular and con-

nected domain in RN.

following equation

Ju 2 .
Frie Au=u" in (0,») x &
(1)
u(t,x) =0 on 39 , u(0,x) = uO(X) ;
1,
we denote by K the set of initial data uo(x) on Wé’w(ﬁf (= {vew' (0/,
v=0 on 030}) such that the solution uf{t,x) of (1) exists for all t > 0
and remains bounded uniformly in t > 0.
Then we prove
o
i) K 1is an unbounded, convex set and 0 € K ,
ii) If u is a non-trivial stationary solution i.e. if u satisfies:

(+)
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() ~sdu=u" in &, ue c? (B , u=0 on 38 , vz o ; :

then u  is an extremal point of K,

111) If uo is in K without being an extremal point of K, then

o
u(t,x) ¢ K for all t > 0 and u(t,x) — 0.
tro
other examples are given after the general statement of Theorem II.1 (in particular

2
'; tiie case where u is replaced by Xeu).
‘ ~bviously this result shows that every non-trivial solution of (2) is
mighily anstable (in the context of (l)): remark the fact that u is unstable

(in the linearized sense at least) is probably well-known(*)

; but we give here
a very precise picture of that instability. 1In particular the result above
1 snows that generically (with respect to uo), u(t,x) does not converge to any
!
sclution of (2).
‘ Section I is devoted to our main result, while in section II we give some
i extensions and some variants of our results. ':
. Let us finally indicate that we do not consider here the existence problem
of sclutions of (2) (or related problems); for these we refer to P. H. Rabinowitz
, [17}: A. Ambrosetti and P. H. Rabinowitz [1]; H. Brezis and R. E. L. Turner {8};

U. G. De Figueiredn, R. D. Nussbaum and P. L. Lions (11]; H. Berestycki and

., L. Lions [6].

) ) , . L, s .
wWe did not find a precise reference for that, but it is somewhat straight-
forward to prove.




I Main results.

I.1: Notations and assumptions.

Let ¢ be a bounded, regular, connected domain in FF. et £ be a

C2 function from R into R satisfying

(3) f is strictly convex, and f£'(0) < ) f(0) =0 ,

1 [

where Al is the first eigenvalue of =-p in (@, with Dirichlet boundary

conditions.

We will consider the following nonlinear heat equation:

3u

g T bu=f@ t>0 , xef

(4)
u(t,x) =0 on 3¢ for t >0 , u(t,0) = uo(x) in & ;

where uy is some given function in X = Wé'w(03.

It is well-known that for any u there exists a unigque local solution

0
to (4) (that is for t ¢ [O,t ) and ¢t depends on u_.) and
max max 0
2,1,a
u(t,x) C (& x [0,T]) (for any T < tmax and for any a < 1).
On the other hand ul(t,x) may not exist for all t > 0 since there may
be blow-up in finite time (see for example J. M. Ball [3)). Thus, of particular

interest for the asymptotic behavior of u(t,x) is the following set of

initial conditions:

K = {uof X, such that there exists a unique solution of (4) for all

t >0 and |u(t,x)| i¢, (indep. of t >0 and x in hy .
0

Then, we have

Theorem 1.1: Under assumption (3), we have
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i) X is convex, unbounded; 0 e¢ K; if u, € K, then for all v < u

v e K; in addition, if we denote by S(v) = [ % |Vv|2 dx - [ F(v)dx where

o 0 ‘s

t 3

F(t) = [ f(s)ds, then we have
0

S(v) >0, for all v in X - {0}

ii) If u is a non-trivial stationary solution of (4) i.e. if wu

satisfies
(5) -Au=f(u)£1_0',u=0_0330’,uecz(é') ; WFO

then u(x) >0 for x in & and u is _an extremal point of K.

iii) If u, € K and if u, is not an extremal point of K then the

-]
corresponding solution wu(t,x) of (4) belongs to K, for all t > 0.

iv) Moreover if u, € é, then wu(t,x) — 0 (in cz(é)). :
>
Remark I.l: The assumption of convexity for f is essential (except for some -i
arguments of the proof of (iv)), and we will explain in section II what
happens if we no longer assume £(0) =0 or £'(0) < Al.
Remark I.2: This result shows that the only way to approach a non-trivial
solution of (5) via the evolution problem (4) is to start with uo being an

extremal point of K and to stay for all t > O in the set of extremal points

of K. 1In particular generically (with respect to u in X) u{t,x) does

o}
o -
not converge to a solution of (5): indeed K U (X - K) is a dense open set of

X on which u(t,x) either goes to 0, or is unbounded.

Remark I.3: We may extend the above result, by replacing -A by a more

general second-order elliptic operator and the Dirichlet boundary conditions by .
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other types of boundary conditions. Finally one can allow f to depend also

on x; but we will not consider such obvious extensions.

While the proof of statements i) ~ iii) is fairly easy, the proof of iv)

will involve some technicalities. In I.2 below, we prove i) - iii); and in

some preliminary results are proved; finally in I.4 we prove iv).

I1.2: Geometrical properties of K:

For uo in K, we will denote by S(t)uo = u(t,x) the solution of (4).

Proof of i):

Let uo, v be in K and let 0 <8 <1, since f

o is convex one has

d -
3t (SS(t)u0 + (1 - G)S(t)vo) - A(es(t)uO + (1 - G)S(t)VO) =

thus if w(t,x) is the maximal solution of (4) with euo + (1 - e)vO as
initial data, one has by well-known comparison theorems w(t,x) < es(t)uO +
(1 - 8)stvivy < ¢ for all x in & and t < t___.

max

Now since f£'(0) < Xl, we have

w '
- bw= £ > £ (0w

and this implies w(t,x) > - C. And this proves that K is convex.

To prove that if uy < K and if v < u, then Vv ¢ K, one just needs

to remark that by the above proof for all v one has a bound from below for

solution vi(t,x) of (4) with initial data v, while if v < U with u0 ¢

then

= ef(S(t)uo) + (1 - O)f(S(t)VO) > f(GS(t)uo + (1 - E)S(t)vo))

1.3

the

K
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vit,x) < s(thu,

applying again comparison results.
[-]
Now let us prove that O € K, indeed if v, satisfies:

- Av, = A\ v in & , v, ¢ Cz(Eﬁ ’ v1 >0 in & , vl =0 on & ,

for ¢ small enough, we deduce

— = 1
Aevl Al(evl) > f (Evl)evl > f(evl) .

Thus, S(t)(evl) Z_svl for all t >0 and evl € K,

Applying what we proved above, we get that

s o

T e T 0 O e A N N et

1={wex , wiEVI}CK .

And this set I is a neighborhood (in X) of 0 (since vl(x) >0 in ¢ and

ov

by Hopf maximum principl> < -=a <0 on 28, where n is the unit
outward normal to o@).
To prove that S(v) > 0, for all v in K - {0}; we first show that

S(v) > 0 for v in K. Indeed if we admit iv) and if we remark that

-]
S(u(t,x)) is nonincreasing (multiply (4) by %% ), then for all u, in K we have

S{ug) 20

°
Since K = K, the claim is proved., Now, suppose that for some v in K,
S(v) = 0: obvicusly S(s(t)v) = 0 and thus é% S{t)v = 0. Hence v is a

staticnary snlution. But if v Z 0, we have, since f 1is convex

f f?vf2 Ax = [ f(v)v dx > 2 [ F(vydx ;
& &

and we ronclude.




P

Proof of ii): Let wu(x) be a solution of (5) and let us prove first that

u > 0. Indeed multiply (5) by u-(= max(-u,0)) and integrate by parts, we

obtain

2
- f |vu™| ax = f f£(-u )u ax ,
¢ &

but f(t) > £'(0)t and the above equality yields:

2

-2 -
f [Vu ['ax < £'(0) f |u | ax
& &
since we assume f'(0) < Al, this implies u = 0 that is u > 0.

Next, we prove u 1is an extremal point of K: we argue by contradiction.

v in K, 6 € (0,1) such that: L

There exist u
o' 0

= + -
u Guo (1 6)vo .

We already saw that es(t)uo + (1 - G)S(t)v0 = w(t,x) satisfies:

(5) %%._ Aw > f(w) in (0,») x o, H

actually since f is strictly convex, this inequality is strict.

Nn the other hand w(0,x) = u{(x) and u satisfies

Ju

EY S Au = - Au = f(u) ,

thus we know not nnly that w(t,x) > u(x), but also by the strong maximum

principle and Hopf principle:

w(t,x) > ul(x) in (0,») <« &
(6)

WMo k) <« 2 (%) in (0,0) x 3 .
an n
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Next, multiply (5) by u(u > 0) and (4) by w;

L[ witudx > [ £t x)ux) - £ulo)wit,x)dx = .
&

_ f(ux))

v
_ fw(t,x))
- é ( w(t,x)

and this quantity is nonnegative since f is convex and w >u > 0.

f wit,x)u(x)dx 2 M and M > f u2(x)dx.
& tf oo &

(%) yw(t,x)u(x)dx .

Hence

To conclude, we admit for the moment the two lemmas which follow:

Lemma I.l: If uy € K, then (S(t)uo,t > 0)

is relatively compact in X.

u

And if we denote by w(uo) the w-limit set of uo that is the set of

in X such that there exists a sequence tnf + »

S(t H
(t)uy > u

X

then w(uo) is a compact, connected subset of X and for all u

satisfying

u satisfies:
. 2.3
-AMu=f(u in & , ue (O

In addition, é% (S(t)uo) — 0.
c®

Lemma 1.2: If u,v e C2 (&) satisfy: u>v >0, vZO

-bu>f(w in &, u
(7)

- Av < f(v) iﬂ

then v = u.

in w(uo)

u=0 on 3y .

0 on &

0 on 3¢




Now, if w= apply Lemma I.1l, we find that there exists tn + » such that

S(tn)uo(x) > u(x), S(tn)vo(x) > v(x); and U, v are stationary solutions of
X X

(4). Therefor~ w(t ,x) » g0+ (1 -6)v and M= (6u+ (1 - 6)v)u dx,
X

Bu + (1 -8)v>u., Since M > f u2 dx, 8u + (1 - 8)v 7 u. Finally, we just
o4

need to remark that = £(8G + (1 - 8)v) = 6f(u) + (1 - 6)£(v) > £(6u + (1 - 2)v);
and a straightforward application of Lemma I.2 yields the desired contradiction.
The proofs +f +ie abov . Lemmas are given in I.3. We will not give the proof of
iii) since it 15 the same as the argument which enables us to prove (6) above.
Let us finally observe that the use of the convexity in the arguments above is

somewhat reminiszent of H. Berestycki [5].

I.3: Some preliminary results:

Proof of Lemma I.l: The first part of Lemma I.l is well-known (see for example

C. M. Dafermos [10]) since u, € K implies (by definition ffutt,x) 5 =€
C

(for example) for t > 1). Thus, we just need to prove that é%—(S(t)uO) — 0.
1o

Indeed, remark first that we have (setting u = S(t)u ) ||§E|; ,

0 at CO,u(é)

I 0~ SC for t>1 and o <1.
c 'O
On the other hand, we have

2
d 1 2 du

e L Il - ranr =5,
dt & 2 Iod dt LZ

t
where F(t) = f f(s)ds. In other words % ]Vu|22 - f F(u) 1is a Liapunov
0 L og

functional.
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Thus f ]%% 2 ds < », and since by the above estimates
0 L

a uniformly continuous function on [0,»), we deduce:

L2 -
du R
- — 0 . ]
dt -0
CO O ('a)
. du | . 0,x .. . du
Since It is bounded in C (3) for any a < 1, this implies: az--———-—* 0
t> ®

(for a < 1).

Proof of Lemma I.2: This result is well-known but we make the proof for the

sake of completeness. Multiply by v, u (7):

[ fwvax <[ f(v)udx
[og

v
or
oA BN g ax < 0
0¢ u v -
fv) . ;
(when v or u =0, == is to be understood as £f'(0)), since 0 < v < u,

v Z 0 and £ 1is strictly convex, this implies u = v.
Before going into the proof of iv), we state and prove some preliminary

results of independent interest:

Lemma I.3: Let E be in K, if 0« w(uo) then w(uo) = {0} i.e.
tow
ult,x) = S(t)uo(x) — 0 .
X
Pronf: It is well-known (see for example H. Brézis and R. E. L. Turner [8]) .

that since f'(0) < Al there exists « > 0, such that

a for any u solution of (5) .

Noll , >
L (O

-10-
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Now remarking that u ¢ w(uo) implies u = 0 or u is a solution of (5), we
just need to invoke Lemma I.l1l and the fact that w(uo) is connected.
We need some notations in order to state the next result: 1if c(x)e c(a')

we will denote by )\l(c) the first eigenvalue of the problem:

- fu = cu+iu in ¢, uewz'p(ﬁs(p<°°)

And vl(c) will be the corresponding positive normalized eigenfunction:

- Avl(c) = cvl(c) + A vl(c) in & , vl(c) € Wz'p(o{(p < »)

1

vite) =0 on 30 , vi(c) >0 in &, Ivi@]|, =+ .

L’ (6§

n->o n-»o
It is well-known that if ¢ -— ¢, then A (c ) — X_ (c) and
m c(@) 1n 1

n-»co

, 2,p
vl(cn) —_— vl(c) in WP (&

We need the following result

Lemma I.4: Let c(t,x) ¢ Cb([0,°°[ X 9)(*), we assume

(8) clex) € cHilomD and & c(tx) € ([0, x &) .

Then xl(c(t)) € C;([o,m[) and

(*)Cb(é) denotes the space of bounded continuous functions on b.
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a - ) 2
(9) S0 (e = - fd GE ctellvyteen]ax .

In addition é% vl(c(t)) exists, is bounded independently of t > 0 and is

} continuous in t > O: vi = -é% vyle(t)) solves the problem "

- avy = 3—3t— O (e(8) + c(8))v (c(t)) + (i (e(8)) + c()v) in O

(10)
viv) , =0, view POpce) , vi=0 on 26
L&
{ 3 0
. Finally, if we assume in addition: s (c(t,x)) —— 0; then
. c®
‘ d e £ 1
,{ I Al(c(t)) — 0 , vi ~—+ 0 (at least in c (&) .
‘ Before going into the proof of Lemma I.4, we state and prove a simple application

Corollary I.l: Let U, € X, Uy 2 0, uo Z0 and let c(t,x) in cb([o,m) x 0

| 5 tro
’ satisfying (8) and 3— c(t,x) —— 0.
c(®
) Let u(t,x) satisfy:
: Ju R 2,1,p
! % Au > c(t,x)u in (0,®) x &, ue W ((0,T) x ) for T < w, p < =

(11)
u(t,x) =0 on 3¢ , u(0,x) = uy (%) .

tow
If we assume that Al(c(t)) <-a <0 for t > tyi then u(t,x) — +=

e S e

uniformly on compact subsets of @&.

Proof of Corollary I.l: A tedious (but straightforward) argument yields that,

by the strong maximum principle, there exists 8§ > 0 such that

-12-
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vl(t,x) til(O,X) in .é’ ’

oo
By assumption and by La2mma I.4: 2 v.(t,x} —+ 0, Thus, for t > t , we
3t 1 1 < -1
5 c (&
V1 af
have % S vl(O,x) or
v
1 01
3t (t,x) < > vl(t,x) .
Now let T = max(to,t 1+ by the strong maximum principle and Hopf principle we

may assume that

u(T,x) Z.YVI(TIX) (for small enough y > 0) .
We finally introduce 6(t,x) = Yea(t-T)/z vl(t,x) (for t > T} and we
compute :
dae a a(e-1) /2 V1
E-Ae -c(t,x)6=36 + ye -3;:_+A1(C(t))e
v
i__(;ie1'_‘YeOL(t-'1‘)/2 atl.<_o , for t>T
and 6(T,x) = le(T,x) < u(T,x).
Therefore wu(t,x) > 6(t,x), for ¢t > T, x in ® 1In particular
u(t.x) > Byea(t_T)/2 vl(O,x) for t > T.

We next turn to

Proof of Lemma I.4:

Recall

vl(c(t))(x).

A (®)

where vl(t,x) = vl(c(t))(x) .

1

the proof of Lemma I.4:

We will denote by Al(t) = Al(c(t)) and vl(t,x) =
that Al(t) is given by
min f ]Vvl2 - cl(t,x)v? ax .
lv| ;=*1 | @ 4
L
1
H
v e Hy

-13-~
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Therefore for h > 0 (for example)

Al(t+h)_- Al(t)
h

<

o L

L et v (6,002 ax - [ c(erhx (v (6,007 ax
4 1 4

and the right-hand side term goes to - f %% (vl(t))2 dx as h -+ 0. On the
4

other hand

Al(t+h) - Xl(t)
h

>

5

[ cte0 vy erh,x)? ax - [ c(trh,x) (v (e+h,x0) % ax
o o

and again the right~hand side term goes to - f %%(vl(t))2 dx as h + O,
&
since vl(t + h,x) - vl(t,x). This proves (9) and the first part of Lemma I.4.
h>0
v
We next prove that vi = Yy exists and is given by (10). Let h > 0 and
let t > 0, we denote by vl = vl(t,x) and v? = vl(t + h,x). We have
obviously
h h .
v, = v A (t + h) = A_(t) c(t + h) -c(t) v, +v
a4y = (2 L. pE—2) «
h h h 2
h h
Al(t + h) + c(t + h) vl - vl Al(t) + ¢c(t) v1 - vl
1 AY
(10') A + ( > ) ( h ) + > ) ( h )
Vh-V Vh—V Vh+V
1 1 . Hl(G) ( 1 1 1) =0
h -0 ! h ! 2 2 :
L
Since
A + + A
ARG R @t £ h) + ott),
2 1 2 !
vh+v ’
1 1 - v (c(t + h) + c(t))
2 1 2 !

we deduce easily




-

vh - v
1 1 < C
- ’
h L2 Ah _ Ah
2
where
+ +
A? = Al(c(t h; c(t)) and Ag is the second eigenvalue of

the problem

NEICES TR

- Av = Av in & : Ve Hé(os .

If we prove that Ag - X? is bounded away from zero when h =+ 0, by (10)
h
v, =~V

we deduce that -l;?r—- is bounded in H2(05 and by a bootstrap argument in

Wz'p(01 (p < =), it is then obvious to pass to the limit and to obtain (10).

Finally proving the remaining part of the Lemma is straightforward provided we

show quantities like A; - A? is bounded away from O ,
In other words, we want to prove that if cn € C(é), cn — ¢ in c@®
n--o

then Az(cn) - Al(cn) >a > 0, indep. of n.
Let us argue by contradiction: replacing if necessary cn by a subsequence

we may assume that Xz(cn) - Xl(cn) — 0, and thus
n-r>o

Az(c“> — A (e) .

n->e

n
s V where

generated by v 5

1

v? is an eigenfunction corresponding to Al(cn) and vg to Az(cn). Then

Now let H" be the 2-dimensional subspace of Hé

we have,

max [ o] - v ax <o+l - cll, s
ve " &




by the variational characterization of Az(c), this yields:

n n
A (e) s A ey + flem =l
which contradicts the fact that Az(c) > Al(c). B

I.4: Asymptotic behavior:

o
We now give the proof of part iv) of Theorem I.l: let u, € K,

0

o
by ult,x) = S(t)u,(x). Since u, € K, there exists v, ¢ K, v, > ug and

we denote

Yo F Uy We denote by v(t,x) = S(t)vo(x).

Let us argue by contradiction: u(t,x) —~ 0; then by Lemma I.3 O ¢ w(uo).

£

In addition w(t,x) = v(t,x) - u(t,x) satisfies:

aw _ = (ftv) - f(u) : -
at Aw = T Yyw in  (0,») x v

w(0,x) = Vo < Uy v w(t,x) = 0 on (0,») x 38

We are going to apply Corollary I.1 with c(t,x) = £'(u(t,x)).

Indeed v(t,x) > u(t,x), and therefore (512%—5—§i210w > f'(u)w, In

addition

T

3 _ em Ju .
3t c(t,x) = £"(u(t,x)) Y o in c(&
in view of Lemma I.l.
Therefore in order to apply Corollary I.l, we need to check that

(12) Al(f'(u(t,x))) Z~a<0 , for t>t,

Assume this is proved; then by Corollary I.1, w(t,x) cannot be bounded which

contradicts the definition of w. '




Now to prove (12), we need the following well-known lemma that we admit
i ' for the moment:
| Lemma I.5: Lrt C be a compact set in X consisting of solutions of (5).
; Then there exists o > 0 such that
A (E'(u(x))) < -a <0 , for every u in C.
L]
§ In particular we may take C = m(uo), and by continuity there exists an open
neighborhood é of C such that
Al(f'(u(x)) < - % < 0 for every u in c .
{
i Now by Lemma I.l, we deduce that for t large enough u(t,x) ¢ é. Indeed
" n ({u(s,x),s > t} n (X - C)) = @ and therefore {u(s,x), s >t} cC for t > T.
" t>0
‘ We conclude the proof of Theorem I.l with the proof of Lemma I.S.
* Proof of Lemma I.5: First, let us remark that for every solution u of (5)

one has

flu(x)), _
Al(-—ET;T——) =0 .

Then, by the well-known comparison theorems on eigenvalues, this implies

A {u(x))) <0 .

This proves Lemma I.5, since Al(f'(u(x))) depends continuously on u.

P STl 2
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ITI Some extensions and related results.

II.1: An extension of (3).

Instead of (3), we now assume that f ¢ C2( R) and satisfies:

(13) f is strictly convex , lim £'(t) < Al

>

We then have

Theorem I1I.1: Under assumption (13), we have

i) K is non-empty if and only if there exists a solution of (5)

(5) -tu=f in O , wec’® , u=0 on 3E ;

moreover, if K # @, then there exists a minimum solution u of (5). In

Q
that case K 1is convex, K # 0, and if uo € K, ve X with v <u then

0

v ¢ K. Furthermore we have S(u) < S(v), for all v in K - {u}.

-]
ii) If K # @, then u e K as soon as there exists a solution of (5)

distinct from u, or as soon as Al(f'(g)) >0

If u .« 3K, then u is an extremal point of K and for all u, in K

o
S(t)u0 -)'("» u.

(this last statement also holds if u is the only solution of (5)).

[
iii) If K # P and u ¢ K, then for every solution u of (5) distinct

from wu, on~ne has: u 1is an extremal point of K

-

Furthermore if U, - K and if U, is not an extremal point of K, then

t s

-]
S(t)uor_ K and S(t)u  — u,

== f =

Remark II.l: The proof of Theorem 17.2 is very similar to the proof of Theorem
I.1 and we will not 1w it.  h variant of the proof of ii) in Theorem I.1 gives

that if f" 1is pozitive and if /l(f'(g)) = 0, then u is an extremal point of K .

-18-
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Remark II.2: Theorem II.2 holds if we replace f(u) by f£f{x,u) assuming that
£(x,*) ¢ C2( R) (for x in &, £(+,t) ¢ Co'a(a) (for some 0 <a <1 and

for all t in R) and that f satisfies:

(14) f£(x,*) is strictly convex, for x in ®; lim §£%§é£l.< A., uniformly in xe€ Bz

t> =0 1

Remark II.3: If we no longer assume that lim f'(t) < Xl, we do not know if
t—)-oo

the result still holds (actually we do not even know that K is convex).

Let us give now a few examples:

Example 1: Take f(t) = 2 (1 + |t|p) or f(t) = Aet (A >0, 1 <p«< ). For
these kinds of nonlinearities, a rather detailed study of solutions of (5) is
given in I. M. Gelfand [13], D. D. Joseph and T. S. Lundgren (14], M. G. Crandall
and P. H. Rabinowitz [9}, C. Bandle {4], F. Mignot and V. P. Puel [16], P. L.
Lions [15)]. 1In particular we know there exists A* ¢ (0,») such that (5) has

a minimum solution gx for X ¢ (0, *) satisfying Al(f'(g )) > 0 and (5) has
no solution for ) > A*. Thus if ) ¢ (0,X*) 1iii) applies, while for X > X*

K = . 1In addition (there, the result depends on the dimension N) in many
cases it is known that for X = 2*, (5) has a unique solution u and ii) (and

5%

€ 3K and S(t)u0 + u for u in K).

Remark II.1l) applies (u e 0

A*
Example 2: Take f(x,t) = f(t) + g(x) with f satisfying (13) and

A

1< lim £'(t) < Az, then (see [5], and [2] for another version) there exists

t >

- o
a closed convex set C in Co'a(O) with C # @ such that 1) if g £ C, then
(5) has no solution and thus by Theorem II.1 K = g; 2) if g € 3C, then (5)
has a unique solution u and thus by Theorem II.l (part ii)), u is an

o
extremal point of K and S(t)uo — u; 3) if g ¢ C, then (5) has exactly

£ o0

-19-
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two distinct solutions u < u and by Theorem 1I.1 (parts ii) and iii)):

ue K, u is an extremal point of K and if u is in

0 K and is not an ,
i extremal point of K then S(t)u0 — u. Remark also that Theorem II.l applies
toroo
} also to the extension of [5), [2] given in [7] (where we relax the assumption

on f at +w),

Example 3: Take £f(t) = it + t2 (A e R). If X < Al' then Theorem I.l applies.

If ) = Al' then obviously 0 is the only solution of

- AU = Au + u2 in & , ue Cz(a) , u=0 on 3¢ .

< T

' Thus i) and the last part of ii) applies: 0 1is an extremal point of K and

; for all u, in K, S(t)u, — 0.
‘ 0 0
| t+oo
@ Now for A > Al, it is quite easy to prove there exists a minimum negative
{
‘ solution u which satisfies Al(f'(g)) > 0. Then ii) and iii) apply and for

all uy in K, uy being not an extremal point, s(t)uO — u,

£

' IT1.2: Iterative schemes,

We are now concerned with the convergence of schemes like

+ + + - +
‘ (15) = a4 ™ cad + £ L, P e 2@, WM =0 o0 O
o . .
» u~ is given and we assume (3), A > 0 and
} (16) f(t) + Xt is nondecreasing for t e R .
i’
(Again we could replace (3) by more general assumptions, but we will not do it ;
§
here for the sake of simplicity). 4
4 The scheme (15) is an implicit one, "approximating (4) for t ¢ (0,«)" !
!
{ with A being the inverse of a time-step; therefore it is quite natural to ask £
o 1

if one has results for (15) which are similar to Theorem I.l.




introcuce again:

0 € X , |un(x)| <c o indep. of n and x} .
u

Then we have:

Theorem I1.2: Under zssumptions (3) and (16), we have

(-]
. . . 0
i) K 1is convex, unbounded; 0 ¢ K and if uO € K, ve X, v<u then

v e K; and vz have S(v) > 0, for all v in K - {0} .

u 1is a non-trivial solution of (4) then u is an extremal point

K .

©

uO € K and if u0 is not an extremal point of K then u" e K,

n> 1.

o -
iv) Moreover if uo € K, then ut — 0 (in C2(99) .
N~

The proof of this result is very similar to the one of Theorem I.l and we will

omit it.
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